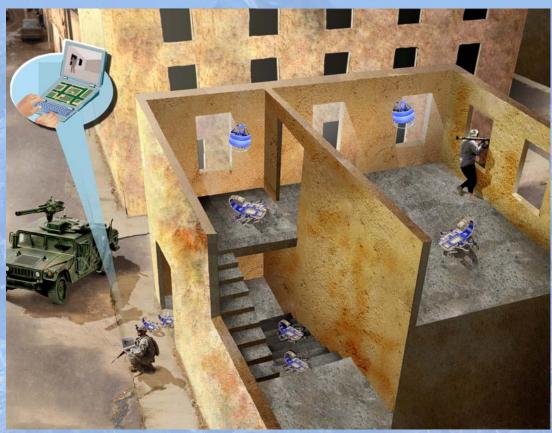


Micro Autonomous Systems and Technology (MAST) Collaborative Technology Alliance:

Microsystem Vision

Dr. Joseph Mait Sensors and Electron Devices

August 15, 2006



- Microsystems Vision
- CTA Vision
- Goals
- Shaping the Vision
- Scenarios
- Technical Areas
- Consortium Structure

Microsystems Vision

To enhance tactical situational awareness in urban and complex terrain by enabling the autonomous operation of a collaborative ensemble of multifunctional, mobile microsystems.

Approved for Public Release

- To perform enabling research and transition technology in pursuit of the Microsystems Vision
- To create a critical mass of private sector and Government scientists and engineers focused on solving military technology challenges
- To support and stimulate dual-use applications to benefit commercial use

Approved for Pulling Resource

- Produce advances in fundamental science and technology
- Demonstrate and transition technology
- Develop research demonstrators for Warfighter experimentation

Approved for Pulling Resource

Shaping the Vision

- January 30-31 Technical Workshop (Research Triangle Park NC)
 - Invited academic & industrial community to discuss technical hurdles
 - 40+ presentations, only 3 invited (DARPA, Sandia, & AFRL)
 - 150 participants (predominantly academic)
 - Assessed the state-of-the-art in microsystem technology
- February 14-15 Government-only Workshop (Adelphi MD)
 - Invited representatives from DoD & government agencies to discuss technical hurdles & CTA technical foci
 - 50+ participants (1/3 non-ARL)
 - Defined technical challenges & proposed CTA structure
- May 18-19 Program Announcement Advisory Board Meeting (Adelphi MD)
 - Invited representatives from DoD & government agencies to review Program Announcement and provide feedback
 - ~30 participants (1/3 non-ARL)
 - Provided feedback on technical and management issues

Shaping the Vision (con't)

Demonstration activities

- Micro-Aerial Vehicle Competition and Workshop
 - September 2005, Garmisch, Germany
 - sponsored in part by ARL
 - demonstrate teleoperated operation outdoors
 - workshop focused on technology gaps
- MAV-06, 2nd US-European Competition and Workshop on Micro Air Vehicles,
 - November 2006, Sandestin FL
 - ARL participating as Steering Committee member
 - demonstrate teleoperated maneuverability and payload drop-off outdoors
- US-Asian Demonstration and Assessment of Micro-aerial and Unmanned Ground Vehicle Technology
 - Fall 2007, Agra, India
 - in planning

Shaping the Vision (con't)

- Opportunity Conference
 - Feedback is solicited from today's attendees
 - Final Program Announcement will be released September 1

Shaping the Vision: Operational Scenarios

- Scenario #1: small unit building search
 - Autonomous navigation in benign indoor environment with human mission control
- Scenario #2: small unit cave search or demolished building
 - Autonomous navigation in complex environment with human mission control
- Scenario #3: small unit perimeter defense
 - Autonomous navigation in complex environment with autonomous mission control

- Scenario #1: small unit building search
 - Small number of microsystems map building interior (halls, doorways, rooms) in search of body heat, booby traps(?), and provide pictures
 - Autonomous navigation in benign indoor environment (smooth floors, stairs, quiescent air flow)
 - Human mission control

- Scenario #2: small unit cave search or demolished building
 - Small number of microsystems map unobstructed paths in search of body heat, booby traps(?), and provide pictures
 - Autonomous navigation in complex environment (rough ground surface, unpredictable air flow)
 - Human mission control

• Scenario #3: small unit perimeter defense

- Small number of microsystems provide perimeter defense (threat detection, threat identification?, threat removal?)
- Autonomous navigation in complex environment (rough ground surface, gusty wind)
- Autonomous mission control

■ Control, perception, & cognition

- Autonomous navigation & control
- Sensing & processing
- Communication
- Mobile, distributed sentience

Ambulation and aeromechanics

- Mechanics in non-benign, complex environments
- Propulsion & mobility actuation

■ Materials & devices

- Heterogeneous integration of devices
- Mixed signal electronics

■ Platform integration

- Microsystem architectures
- Subsystem interaction
- Packaging

Miniature power and energy

Power integration and management

The overlap and integration between these technical areas drives research.

Micro Autonomous Systems and Technology

Microsystem Mechanics

Processing for Autonomous Operation

Microelectronics

Platform Integration